Abstract

The application of raw materials derived from renewable feedstock has given rise to growing interest recently, as it can be exploited for the production of bio-based materials from vegetable oils. Their availability, biodegradability and low prices have been taken into account. In this work, vegetable oil-based polyols as a prospective replacement for petroleum polyols were investigated. A two-stage method for polyol preparation by incomplete epoxidation of natural oils and subsequent complete oxirane ring opening under microwave irradiation is presented. The course of epoxidation and oxirane ring-opening process was determined analytically by an evaluation of iodine, epoxy and hydroxyl values. The samples of oils and their derivatives were also analyzed by FT-IR and characterized by size exclusion chromatography (SEC) in order to calculate their functionalities. Finally, polyols with two different hydroxyl values were obtained and used for the synthesis of flexible polyurethane (PUR) foams. The scope of this research includes the determination of the relationship between the rapeseed oil-based polyol content and the properties of the resulting materials. It was found that applying bio-based polyols in conjunction with petroleum-based polyols for PUR foams formulations resulted in materials with good mechanical properties and a higher number of cells with smaller dimensions.

Highlights

  • The depletion of the world crude oil stock, increased prices and more strict regulations relating to the natural environment have increased the demand for renewable resources which is coherent with the sustainable development principles

  • These characteristics result from a specific open cell structure of flexible foams, which is built of struts and plateau borders [6,7,8,9]

  • The contents of functional groups in the obtained rapeseed oil-based derivatives were determined by analytical methods

Read more

Summary

Introduction

The depletion of the world crude oil stock, increased prices and more strict regulations relating to the natural environment have increased the demand for renewable resources which is coherent with the sustainable development principles. Flexible PUR foams are widely used in many diverse applications such as bedding, furniture and in the automotive industry. This is caused by their unparallel performance characteristics, i.e., vibration damping, sound insulation, energy and shock absorption, shape conformance, consumer comfort and protection from impact. These characteristics result from a specific open cell structure of flexible foams, which is built of struts and plateau borders [6,7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call