Abstract
Nickel oxide (NiO) nanoparticles were synthesized at different pH levels via a sol–gel method and calcined using microwave assistance. The study explored the effects of pH on NiO nanoparticles morphology, structure and electronic properties. Density functional theory (DFT + U) calculations were employed to investigate the structural and electronic properties of the material. NiO synthesized at pH 8 displayed superior crystallinity and particle size distribution, with spherical-like nanoparticles averaging 3 nm in size. DFT + U calculations revealed a band gap of 4.07 eV and a surface energy convergence of 51 meV/Å2, indicating stability. These findings suggest pH 8 as the optimal condition for NiO synthesis. Electrochemical tests demonstrated a high specific capacitance of 87.7F g−1 at a scan rate of 10 mV s−1, indicating promising electrochemical properties for supercapacitor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.