Abstract

In this study, we have synthesized a solid acid catalyst by areca nut husk using low temperature hydrothermal carbonization method. The fabricated catalyst has enhanced sulfonic actives sites (3.12%) and high acid density (1.88 mmol g−1) due to –SO3H, which are used significantly for effective biodiesel synthesis at low temperatures. The chemical composition and morphology of the catalyst is determined by various techniques, such as Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning electron microscope (SEM), Energy disruptive spectroscopy (EDS), Mapping, Thermogravimetric analysis (TGA), CHNS analyzer, Transmission electron microscopy (TEM), particle size analyzer, and X-ray photoelectron spectroscopy (XPS). Acid–base back titration method was used to determine the acid density of the synthesized material. In the presence of the as-fabricated catalyst, the conversion of oleic acid (OA) to methyl oleate reached 96.4% in 60 min under optimized conditions (1:25 Oleic acid: methanol ratio, 80 °C, 60 min, 9 wt% catalyst dosage) and observed low activation energy of 45.377 kJ mol−1. The presence of the porous structure and sulfonic groups of the catalyst contributes to the high activity of the catalyst. The biodiesel synthesis was confirmed by gas-chromatography mass spectrometer (GC–MS) and Nuclear magnetic resonance (NMR). The reusability of the catalyst was examined up to four consecutive cycles, yielding a high 85% transformation of OA to methyl oleate on the fourth catalytic cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call