Abstract

The microwave-assisted solution combustion synthesis was applied to the initial synthesizing of Ca3Co2O6powder using glycine as a fuel and nitrate as an oxidant. The as-synthesized powders were calcined at 700-1,000ºC for 4h. Product characterization was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning electron microscope (SEM). The fuel-to-oxidizer molar ratio was found to affect the combustion reaction and character of the powder obtained. The phase composition of powder after calcination at various temperatures has shown that the formation of Ca3Co2O6occurs directly. The calcined powder possesses a rhombohedral crystal structure with an X-ray diffraction pattern that could be matched with the Ca3Co2O6JCPDS: 89-0629. This method is a simple way of synthesizing fine Ca3Co2O6powder with a low calcination temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call