Abstract

AbstractCarbon‐based single‐atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon‐based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based SACs within 3 min without inert gas protection. The obtained carbon‐based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single‐atom Ni implanted N‐doped carbon (Ni1−N−C) derived from a Ni‐doped metal–organic framework (Ni‐ZIF‐8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1−N−C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large‐scale synthesis of SACs as well as other carbon‐based materials for efficient catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.