Abstract

We report an environmentally benign process for the synthesis of nearly monodisperse silver nanoparticles in large quantities via a microwave-assisted “green” chemistry method in an aqueous system, using basic amino acids, such as l-lysine or l-arginine, as reducing agents and soluble starch as a protecting agent. The presence of amino acids with basicity such as l-lysine or l-arginine, having two amino groups in each molecule, is indispensable for the synthesis of uniform silver nanoparticles. The current synthetic process can be readily applied to large-scale production, for example, a reaction yielding 0.1 g of nearly monodisperse silver nanoparticles can be performed in a 80 mL microwave sealed vessel. This combination of solvent, renewable reactants, and microwave irradiation seem to make it clear that green chemical synthesis of metal nanoparticles with well-controlled shapes, sizes, and structures has practical potential. Self-assembly of starch-capped silver nanoparticles results in multilayered m...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.