Abstract

Microwave-assisted pyrolysis (MWAP) of furfural residue (FR) was performed in a continuously operated auger reactor. The effects of temperature and additives on pyrolysis products and char properties were investigated. The yield of FRBC (furfural residue biochar) decreased to 43.62 wt.% and non-condensable gas yield increased to 40.37 wt.% with temperature increasing to 750 °C. However, condensate yield increased with increasing temperature from 450 to 550 °C, reaching maximum (i.e. 21.49 wt.%) at 550 °C, then decreased to 15.65 wt.% as temperature reached 750 °C. Kaolin and K2CO3 promoted production of non-condensable gases and CaO increased the yield of FRBC. The relative proportion (RP) values of carbon, hydrogen, nitrogen and sulfur in FRBC were 50.49–65.07 wt.%, 13.05–26.81 wt.%, 61.99–79.84 wt.% and 60.93–74.16 wt.%, respectively. The highest iodine adsorption value of 127mg/g and methylene blue number of 59 mg/g were achieved for FRBC at 450 °C. Kaolin, CaO and K2CO3 increased methylene blue number, and K2CO3 significantly increased iodine adsorption capacity of FRBC. CaO retained sulfur, chlorine, zinc, and kaolin showed greater retention capacities for copper, nickel, chromium and zinc. The major crystalline phases of sulfur and nitrogen were CaSO4, K2Ca2(SO4)3, Zr(NO3)4 in FRBC and K2Ca2(SO4)3 in FR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call