Abstract

Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate (SDBS) was investigated, focusing on establishing the best conditions for maximum degradation. The study involving different persulfate based oxidants, such as potassium persulfate (KPS), ammonium persulfate (NH3PS) and sodium persulfate (NaPS), revealed that the extent of degradation as 98.3, 82.2 and 68.2% was obtained for the use of KPS, NH3PS and NaPS, respectively. The study of the effect of SDBS concentration (25–100 mg/L), oxidant loading (0–3 g/L) and power (140–350 W) established that degradation decreased with an increase in the operating parameter beyond the optimum condition. Under optimized conditions using potassium persulfate (KPS) as an oxidant, 51.6% and 98.3% degradation of 50 mg/L SDBS solution was obtained by conventional and microwave assisted chemical oxidation approach, respectively, under optimized conditions of power, oxidant loading, volume and time maintained as 280 W, 2 g/L, 250 mL and 28 min, respectively. Extending the conventional approach for 120 min resulted in degradation of 92.5%, which establishes that microwave helps in reducing the treatment time significantly. Kinetic study revealed pseudo-first-order behavior for degradation of SDBS. Energy per order (EEO) for conventional and microwave assisted degradation was observed to be 840 and 317.33 kWh/m3, respectively. Overall, microwave assisted persulfate induced degradation of SDBS has been established to be promising method giving rapid degradation and better economics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call