Abstract
AbstractPolycaprolactone/boron nitride (PCL/BN) composites were prepared by microwave‐assisted ring‐opening polymerization of ε‐caprolactone (ε‐CL). In order to improve the dispersibility and interfacial interaction between BN fillers and PCL matrix, hydroxyl functional BN (mBN) was first prepared to be used as a macroinitiator for ε‐CL. Then BN grafted PCL (BN‐g‐PCL) copolymers were obtained via the in situ method, which acted as in situ compatibilizers in the PCL/BN composites. Various techniques were applied to characterize the mBN and PCL/BN composites. The Fourier transform infrared spectroscopy results confirm the structure of the BN‐g‐PCL copolymer. Field emission SEM graphs exhibit that, for the PCL/mBN composites, the mBN presents a homogeneous dispersion in the matrix and interfacial adhesion between the PCL and mBN is improved. These are beneficial for enhancing the thermal conductivity of the PCL/mBN composites. Notably, the PCL/mBN composite with 5 wt% mBN loading achieves the highest thermal conductivity of 0.55 W m−1 K−1, which is 2.75 times higher than that of pure PCL, 0.20 W m−1 K−1. This indicates that the excellent dispersion and interfacial adhesion could lead to the construction of continuous thermal conductive paths at a low BN loading and reduce the heat loss caused by phonon scattering in the interface. Furthermore, mBN could help to improve the mechanical properties of the composite. On adding 5 wt% mBN, the tensile strength and tensile modulus of the composite are 1.58 and 2.05 times higher, respectively, than those of PCL. © 2020 Society of Chemical Industry
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.