Abstract
Palladium nanoparticles (NPs) were successfully synthesized via a rapid and facile microwave route in HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer solution. The shape- and size-controlled Pd nanoparticles could be obtained by one-step method without dependence of seed-mediated growth. The capping agent plays a key role in the formation of Pd NPs with different shape and size, which could be tuned by varying capping agents such as polyvinylpyrrolidone (PVP), cetyltrimethylammonium bromide (CTAB), sodium citrate (Na3(cit)) and potassium bromide (KBr). The size-dependent catalytic activities of the obtained Pd NPs for Suzuki coupling reaction were also investigated. It demonstrated that the catalytic activity of Pd NPs was enhanced regularly with the decrease of particle size. Pd NPs less than 10 nm exhibited better catalytic activities for Suzuki reaction than the commercial Pd/C catalyst. Pd/MWCNTs and Pd/SBA-15 nanocomposites were also prepared by a facile method and afforded good catalytic activity and reusability. This "green" synthetic protocol could be used as a general method for the rapid synthesis of transition metal nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.