Abstract
Cordyceps sinensis is a well-known tonic food with broad medicinal properties. The aim of the present study was to investigate the optimization of microwave-assisted extraction (MAE) and characterize chemical structures and chain conformation of polysaccharides from a novel C. sinensis fungus UM01. Ion-exchange and gel filtration chromatography were used to purify the polysaccharides. The chemical structure of purified polysaccharide was determined through gas chromatography-mass spectrometry. Moreover, high performance size exclusion chromatography combined with refractive index detector and multiangle laser light scattering were conducted to analyze the molecular weight (Mw ) and chain conformation of purified polysaccharide. Based on the orthogonal design L9 , optimal MAE conditions could be obtained through 1300 W of microwave power, with a 5-min irradiation time at a solid to water ratio of 1:60, generating the highest extraction yield of 6.20%. Subsequently, the polysaccharide UM01-S1 was purified. The UM01-S1 is a glucan-type polysaccharide with a (1→4)-β-d-glucosyl backbone and branching points located at O-3 of Glcp with a terminal-d-Glcp. The Mw , radius of gyration (Rg ) and hydrodynamic radius (Rh ) of UM01-S1 were determined as 5.442 × 10(6) Da, 21.8 and 20.2 nm, respectively. Using the polymer solution theory, the exponent (ν) value of the power law function was calculated as 0.38, and the shape factor (ρ = Rg /Rh ) was 1.079, indicating that UM01-S1 has a sphere-like conformation with a branched structure in an aqueous solution. These results provide fundamental information for the future application of polysaccharides from cultured C. sinensis in health and functional food area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.