Abstract

Abstract Herein, microwave-assisted direct coupling of Graphene Nanoplatelets (GNP) with polymers including hydroxyl ( OH) groups such as poly ethylene glycol (PEG) and bio-molecules like 4-phenylazophenol (Azo) are investigated. Among different water-soluble polymers, PEG has received unique consideration due to its biocompatibility. Moreover, Azo-treated GNP can easily employ in long-term solar thermal storage. Thus, an electrophilic addition reaction under microwave irradiation is presented as an efficient procedure to functionalize GNP with Azo and PEG. In order to compare the activities of different catalysts under microwave irradiation, the direct coupling of GNP with Azo and PEG were performed in the presence of ZnCl2, FeCl2, TiCl4 and AlCl3, separately. The use of simple Lewis acids loading provides an electrophilic addition reaction in as little as 30 min, which provide a shortcut and prevent time-consuming and multiple steps approaches. Interestingly, PEG-treated GNP has no cross-linking of the flakes, which this allows the production of more dispersed GNP in aqueous media. Investigation of colloidal stability using particle absorbance measurement showed successful results in terms of stability with very low sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.