Abstract

This study targeted the sustainable utilization of chitin and chitosan from crayfish shell waste, and further depolymerization of the recovered products in one step through synergy between microwaves and graphene oxide, aiming for the monosaccharides, 5-hydroxymethylfurfural and other high-value products. The results indicated that graphene oxide was more effective than graphene in enhancing the microwave absorption properties of the system, which is contrary to the parameters of their dielectric properties. The heating rate was increased by 0.37 K/s and 0.26 K/s when graphene oxide was introduced into the chitin and chitosan depolymerization systems, respectively, at a microwave power of 5 W/g. The mechanism underlying the impact of graphene oxide on chitin and chitosan under a microwave field was proposed by analyzing the variations in the depolymerization products of chitin and chitosan systems under different reaction conditions, including holding time, catalyst content, solvent content, and reaction temperature. Furthermore, the recovered graphene oxide exhibited delamination upon redispersion in water, which was not observed in the initial samples. The infrared spectra and scanning electron microscopy results suggest that the catalytic reaction is associated with oxygen-containing functional groups. This study demonstrated the synergistic effect of microwaves and graphene oxide on the depolymerization of chitin and chitosan, and the ability to achieve rapid one-step depolymerization in an acid/alkali-free solvent, which provides a green and promising development for the degradation of carbohydrate macromolecules in crustacean solid waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call