Abstract

An efficient and facile method was introduced for the synthesis of benzimidazoles in this paper. The optimum reaction conditions were determined. A series of benzimidazoles bearing phenolic hydroxyl(2a—2t) were synthesized in moderate to excellent yields starting from differently substituted hydroxyl benzaldehyde and 4-position substituted o-phenylenediamine via nu-cleophilic addition in the presence of catalyst Na2S2O5 under microwave irradiation condition. Herein, effects of the catalyst, molar ratio of reactants, reaction temperature and solvent were investigated. The optimal reaction condition was determined. The effect of DMF and EtOH solvent on the reaction was compared. The synthesized compounds were characterized by FTIR, HRMS, 1H NMR and 13C NMR spectroscopy. Further, the bacteriostatic activities of the synthesized compounds were evaluated with ciprofloxacin and itraconazole as a positive control, respectively. Compounds 2b, 2n, 2q and 2r exhibited some antibacterial activity. The lowest MIC of antibacterial activity of compound 2b was 32 µg/mL. Meanwhile, the luminescence property of compound 2b was studied. The antibacterial activity of compound 2b, along with their good fluorescence performance highlighted the potential of these compounds as lead structures and owned fluorescence trace for further study towards the development of novel drugs and functional mechanisms in living organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.