Abstract

AbstractAn innovative catalytic system for biodiesel synthesis starting from waste biomass (waste cooking oil, WCO) in the presence of waste material (steel slags) as the catalyst under microwave irradiation is described. The reaction conditions were optimized by using response surface methodology (RSM) based on Box‐Behnken Design (BBD) taking time, temperature, and catalyst weight as factors. The optimum conditions, leading to 97 % conversion of WCO into FAMEs (fatty acid methyl esters) were found to be: 18 min reaction time, 134 °C and 380 mg of catalyst for 1.0 mL of WCO. The recyclability of the catalyst was tested at different experimental conditions, and by increasing the reaction times for subsequent cycles, the catalytic efficiency remained steady. The alkalinity of both as‐received steel slags and steel slags recovered after three reaction cycles was tested with the Hammett indicator method. The steel slags were also characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray Fluorescence (ED‐XRF), X‐Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), X‐ray Photoelectron Spectroscopy (XPS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.