Abstract

The rotational spectrum of diazirine-d2, [Formula: see text], has been recorded in the ranges 8–40 and 100–400 GHz. The hyperfine structure of the measured rotational lines has been analyzed. The analysis required the treatment of two pairs of equivalent nuclei, which is discussed in detail. The deduced deuterium nuclear-quadrupole coupling constants are[Formula: see text]The quadrupole coupling constants of the nitrogen nuclei[Formula: see text]are taken from the parent species, and the spin-rotation coupling constants are[Formula: see text]The rotational and centrifugal distortion constants have been obtained for the ground vibrational state from the analysis of the unperturbed line positions. The complete rs structure of diazirine has been determined using the rotational constants of all available isotopomers of diazirine. The internuclear distances are rs(C—N) = 148.13(24) pm, rs(C—H) = 108.03(29) pm, and rs(N—N) = 122.80(25) pm, and the bond angles are [Formula: see text] and [Formula: see text], with the HCH plane perpendicular to the NCN plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.