Abstract

Pure rotational transitions of a rare gas atom-reactive open-shell triatom van der Waals complex Ar-HO2 have been observed by Fourier transform microwave spectroscopy. The transitions observed are of a type with K(a) = 0 and 1. Furthermore, by monitoring the change of the free induction decay signal of the a-type transitions, b-type transitions have been observed by a double resonance technique in the region 18-49 GHz. All these transitions provide us precise molecular constants. The r0 structure of Ar-HO2 has been determined by fixing the structure of the HO2 monomer. The determined structure is planar and almost T shaped, where the argon atom is slightly shifted to the hydrogen atom of HO2. The experimental data supplemented by high-level ab initio calculations indicate that the van der Waals bond of Ar-HO2 is relatively rigid. On the other hand, effects on the unpaired electron distribution by the complex formation are found to be fairly small, since the fine and hyperfine constants of Ar-HO2 are well explained by those of the HO2 monomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.