Abstract
The Al2O3-ZrO2 eutectic composition was rapidly solidified, forming amorphous and crystalline structures. The as-quenched material was crushed and pressed into pellets which were sintered conventionally or with microwaves. Conventional and microwave sintering at temperatures up to 1600 °C resulted in a microstructure where 100–200 nm ZrO2 grains were present intergranularly in the α-Al2O3 grains. Larger ZrO2 grains (∼1 μm) were found intergranularly. The as-quenched lamellar structure spheroidized during sintering at high temperatures. Boron contamination of the powders resulted in more homogeneous and dense as-fired samples but promoted the ZrO2 tetragonal-to-monoclinic transformation, which was attributed to increased grain boundary diffusivity. Conventional sintering at low temperatures resulted in the formation of “rods” of an Al2O3-rich phase which grew from a low-melting B2O3-rich liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.