Abstract
Microwave activation of electrochemical processes is possible by self-focussing of intense microwave radiation at the electrode|solution (electrolyte) interface of an electrode immersed in a solution and placed in a microwave cavity. Considerable changes in voltammetric current responses are observed experimentally for the one-electron reduction of Ru(NH3)63+ in aqueous 0.1 M KCl and for the stepwise two-electron reduction of the methylviologen dication (MV2+) in aqueous 0.1 M NaCl. The formation and interconversion of two distinct forms of solid deposits, MVam0 and MVcryst0, on a mercury electrode surface is investigated, both in the presence of microwave activation and with conventional heating. It is shown that microwave activation achieves (i) high temperatures in the vicinity of the electrode, (ii) thermal desorption of deposits from the electrode surface and (iii) limiting currents an order of magnitude higher compared to those induced by conventional isothermal heating to the same electrode temperature.A simple physical model based on Joule heating of the aqueous solution phase is employed in a finite element simulation (FIDAPTM) procedure to explain the differences observed experimentally between conventional heating and microwave activation. Based on the comparison of simulation and experimental data, a considerable thermal gradient and ‘hot spot ’ region in the diffusion layer of the electrode, together with convective mass transport are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.