Abstract

In order to improve the microwave absorption performance of absorbing materials, the composite foam absorbing materials with different multi-walled carbon nanotube (MWCNT) contents were prepared using polyurethane foam as the substrate and MWCNTs and flaked carbonyl iron powder as absorbers. The electromagnetic properties of the materials were characterized and analyzed. Then, CST electromagnetic simulation software was used to simulate the electromagnetic shielding effect of absorbing materials on mechatronics products under a strong electromagnetic irradiation environment, and, finally, it was verified by irradiation experiment. The results show that the materials have good microwave absorption properties, in which the composites containing 1.5 wt.% MWCNTs exhibit good microwave absorption properties. The minimum reflectivity reaches −29 dB when the thickness is 3 mm and −15.6 dB when the thickness is 1.5 mm, with a bandwidth of 5.7 GHz for reflectivity less than −10 dB. The good microwave absorption performance of the material is due to the synergistic effect of MWCNTs particles and good impedance matching. The simulation and experimental results show that the mechatronics product with absorbing materials can protect against strong electromagnetic interference and ensure the normal operation of the mechatronics product circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.