Abstract
The current study explores the influence of Zinc (Zn) doping on the crystallography, optical behavior, dielectric properties, and microwave absorption characteristics of hexagonal Barium Vanadate (Ba3(VO4)2). Samples were systematically synthesized with Zn doping concentrations of x = 0, 0.05, 0.1, 0.15, and 0.2 mol%, resulting in Ba3–xZnx(VO4)2. Employing various characterization techniques, the alterations in structural, optical, and electrical responses due to incremental Zn incorporation are reported. The UV–VIS DRS absorption spectra reveal a decrease in energy bandgap with increasing concentration of Zn. The lowest optical energy band gap observed was 3.65 eV for x = 0.2 mol% Zn. Notably, at a thickness of 6.5 mm, the material achieved a high reflection loss of −82.37 dB at 12.47 GHz for x = 0.05 mol% of Zn. Similarly, the same material configuration exhibited a maximum effective absorption bandwidth (EAB) of 5.01 GHz, spanning a frequency range from 12.24 to 17.25 GHz when the thickness was set to 5.5 mm. Furthermore, as the Zn concentration increased from x = 0.05 to 0.2 mol%, a decreasing trend in reflection loss was observed, correlating well with the dielectric parameters of samples with different Zn concentrations. The work provides insightful correlations between Zn doping levels and the material’s performance in potential applications ranging from optoelectronics to electromagnetic wave absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.