Abstract

AbstractIn recent times, there is an increasing need for effective control of electromagnetic pollution, which can avoid excessive radiation effects on the human body. Microwave absorption materials are attracting wide research interests to reduce electromagnetic pollution due to the rapid development of electronic equipment. In this study, Nitrile butadiene rubber (NBR)/ethylene propylene diene monomer rubber (EPDM) were mixed with multiwalled carbon nanotubes (MWCNT) to prepare microwave absorbing materials. The distribution of fillers, AC conductivity, complex permittivity, and microwave absorption performance of the composites were systematically investigated. It found that the AC conductivity, both real and imaginary parts of the permittivity were significantly improved in the composite with the increasing ratio of MWCNT contents. The NBR/EPDM/MWCNT composites with eight parts per hundred concerning with rubber (phr) MWCNT had a minimum reflection loss (RLmin) of −48.1 dB at the optimum thickness of 2.07 mm. Importantly, the adding sequence of MWCNT and plasticizer dioctyl phthalate (DOP) to the rubber matrix is found to play an important role in determining the distribution of fillers and the structure of polymer blends. The composite with plasticizer added before MWCNT exhibited a better impedance matching and as a result, achieved a good microwave absorption performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.