Abstract

Microarchitectural side channels expose unprotected software to information leakage attacks where a software adversary is able to track runtime behavior of a benign process and steal secrets such as cryptographic keys. As suggested by incremental software patches for the RSA algorithm against variants of side-channel attacks within different versions of cryptographic libraries, protecting security-critical algorithms against side channels is an intricate task. Software protections avoid leakages by operating in constant time with a uniform resource usage pattern independent of the processed secret. In this respect, automated testing and verification of software binaries for leakage-free behavior is of importance, particularly when the source code is not available. In this work, we propose a novel technique based on Dynamic Binary Instrumentation and Mutual Information Analysis to efficiently locate and quantify memory based and control-flow based microarchitectural leakages. We develop a software framework named \tool~for side-channel analysis of binaries which can be extended to support new classes of leakage. For the first time, by utilizing \tool, we perform rigorous leakage analysis of two widely-used closed-source cryptographic libraries: \emph{Intel IPP} and \emph{Microsoft CNG}. We analyze $15$ different cryptographic implementations consisting of $112$ million instructions in about $105$ minutes of CPU time. By locating previously unknown leakages in hardened implementations, our results suggest that \tool~can efficiently find microarchitectural leakages in software binaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.