Abstract

Beta-titanium alloys such as Ti-15Mo are increasingly utilized for orthopaedic implant applications because of their excellent corrosion resistance and low elastic modulus. Particularly in osteosynthesis, where the biomaterial stands in direct contact to soft tissue, undesirable biologic reactions may have severe consequences especially in the vulnerable state of trauma and added iatrogenic damage to the microvascular system. In a comparative study we therefore assessed in vivo nutritive perfusion and leukocytic response of striated muscle to the biomaterials Ti-15Mo, Ti-6Al-4V and Ti-6Al-7Nb, thereby drawing conclusions on their short term inflammatory potential. Utilizing the well established skinfold chamber preparation in the hamster and intravital fluorescence microscopy, we could not demonstrate any significant discrepancies between the three alloys. All metals induced an initial moderate inflammatory response in skeletal muscle microcirculation. While recuperation of animals treated with Ti-15Mo and Ti-6Al-7Nb was prompt, we documented a slightly more sluggish recovery of Ti-6Al-4V treated animals. A gross toxicity was not observed for any of the alloys. Conclusively, Ti-15Mo, Ti-6Al-4V and Ti-6Al-7Nb induce an only transient inflammatory answer of the striated muscle microvascular system. Our results indicate that on the microvascular level the tested bulk Ti-alloys do not cause enduring biologic impairment in muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.