Abstract

Capillary density rarefaction and endothelial dysfunction contribute to chronic hypoperfusion and cerebral small vessel disease. Previous animal experiments revealed spatiotemporal microvascular remodeling directing post-stroke brain reorganization. We hypothesized that microcirculatory changes during acute cerebrovascular events could be reflected systemically and visualized sublingually. In a prospective observational trial in vivo sublingual sidestream darkfield videomicroscopy was performed in twenty-one patients with either acute stroke (n=13 ischemic, n=1 ischemic with hemorrhagic transformation and n=2 hemorrhagic stroke) or transitory ischemic attacks (n=5) within 24h after hospital admission and compared to an age- and sex-matched control group. Repetitive measurements were performed on the third day and after one week. Functional and perfused total capillary density was rarefied in the overall patient group (3060 vs 3717μm/mm2, p=0.001 and 5263 vs 6550μm/mm2, p=0.002, respectively) and in patients with ischemic strokes (2897 vs. 3717μm/mm2, p<0.001 and 5263 vs. 6550μm/mm2, p=0.006, respectively) when compared to healthy controls. The perfused boundary region (PBR), which was measured as an inverse indicator of glycocalyx thickness, was markedly related to red blood cell (RBC) filling percentage (regarded as an estimate of microvessel perfusion) in the overall patient group (r=-0.843, p<0.001), in patients with ischemic strokes (r=-0.82, p=0.001) as well as in healthy volunteers (r=-0.845, p<0.001). In addition, there were significant associations between platelet count or platelet aggregation values (as measured by whole blood impedance aggregometry) and microvascular parameters in the overall patient collective, as well as in patients with ischemic strokes. In conclusion, cerebrovascular events are associated with altered systemic microvascular perfusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.