Abstract

To investigate the influence of vasomotor tone and vessel compliance on pulmonary segmental vascular resistance, we determined the longitudinal distribution of vascular pressures in 15 isolated blood perfused lungs of newborn lambs. We measured pulmonary arterial and left atrial pressures and by micropuncture the pressures in 20- to 80-micron-diam subpleural arterioles and venules, both before and after paralyzing the vasculature with papaverine hydrochloride. In five lungs we also determined the microvascular pressure profile during reverse perfusion. In lungs with baseline vasomotor tone, approximately 32% of the total pressure drop was in arteries, approximately 32% in microvessels, and approximately 36% in veins. With elimination of vasomotor tone, arterial and venous resistances decreased to one-fifth and one-half of base-line values, respectively, indicating that vasomotor tone contributed mainly toward arterial resistance. During reverse perfusion, the pressure drop in veins was similar to that in arteries during forward perfusion, suggesting that the compliance of arteries and veins is comparable. We conclude that vascular tone and compliance are important factors that determine the distribution of segmental vascular resistance in lungs of the newborn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.