Abstract
Convective transport is a critical element in the regulation of steroidogenesis and spermatogenesis in the testis. Steroid hormones are distributed to their target cells within seminiferous tubules via interstitial fluid. The movement of interstitial fluid and lymph, which transports protein hormones and many of the substrates required for spermatogenesis and steroidogenesis, is driven by capillary filtration. Despite the importance of convective transport in testicular function, however, the mechanisms regulating transvascular exchange in the testis are unknown. As a first step in understanding this process, we measured directly the microvascular hydrostatic pressure distribution in the hamster testis (pentobarbital sodium, 70 mg/kg ip). Using a servo-null transducer, intravascular pressure was measured in all vessel types accessible beneath the surface of the testis of 19 animals. Systemic arterial pressure averaged 89 +/- 2 (SE) mmHg. The most significant observations were that mean capillary pressure was extremely low (10.1 +/- 0.8 mmHg) and remarkably constant (range 8.2-13.3 mmHg), despite a 45 mmHg range in systemic mean arterial pressure among the animals observed. The maintenance of a low hydrostatic pressure in testicular capillaries may serve to sustain fluid filtration at a rate that prevents washout of essential solutes while preserving convective transport. Unfortunately, the anatomical and functional characteristics that determine this unique microvascular environment may also expose the testis to significant pathological risks. For example, the large pre- to postcapillary resistance ratio observed suggests that testicular capillaries must be highly susceptible to increases in venous pressure.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.