Abstract

The cytoadherence of infected red blood cells (IRBCs) to the vascular endothelium is the major cause of IRBC sequestration and vessel blockage in the cerebral form of human malaria. Among the rodent models of malaria, Plasmodium yoelii 17XL-infected mice show many similarities with the human cerebral malaria caused by P. falciparum. In both, the sequestration of IRBCs in the brain vessels is secondary to the cytoadherence of IRBCs to the vascular endothelium. Similar to P. falciparum infection in the human but in contrast to P. berghei ANKA infection in mice, P. yoelii 17XL results in little, if any, accumulation of monocytes in the brain. In vivo microcirculatory studies reported here were designed to further understand the hemodynamic aspects and mechanisms underlying cytoadherence of IRBCs in the P. yoelii model using the easily accessible cremaster muscle vasculature. The results show significant decreases in arteriovenous red blood cell velocities (Vrbc) and wall shear rates in the microcirculation of P. yoelii-infected mice, with a maximal decrease occurring in small-diameter postcapillary venules, the main sites of cytoadherence. This reflects contributions from IRBC cytoadherence as well as from increased rigidity of parasitized red blood cells. No cytoadherence is observed in arterioles of the infected mice despite decreased wall shear rates, indicating that endothelial receptors for cytoadherence are restricted to venules. Infusion of a monoclonal antibody (MAb) against the intercellular adhesion molecule-1 (ICAM-1) resulted in significant increases in both arteriolar and venular Vrbc and wall shear rates, accompanied by detachment of adhered IRBCs at some venular sites. The peripheral blood smears taken after the MAb infusion showed a distinct increase in the percentage of schizonts, again indicating detachment and/or prevention of cytoadherence. An MAb against the vascular cell adhesion molecule-1 (VCAM-1) as well as an irrelevant control antibody had no effect on these parameters. These results provide the first in vivo microcirculatory evidence indicating involvement of ICAM-1, but not of VCAM-1, in the sequestration of IRBCs in a rodent model of cerebral malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.