Abstract

We compared spreading of Vero fibroblasts when microtubules were depolymerized or stabilized. After initial attachment cells start blebbing that continues for different time and abruptly transfers into spreading. After spreading initiation, most cells spread in an anisotropic manner through stochastic formation of lamellipodia. A second mode was rapid, isotropic spreading via formation of circular lamellum that occurs in 15% of cells. The rate of spreading was maximal at the beginning and decreased during the first hour according to logarithmic law. After 60 min many cells formed stable efges and started migrating on the substrate. However, cell area slowly continued to increase. Actin bundles are formed 20 min after cell attachment and they first run along cell boundary. This system disassembles within 20-40 min and is substituted with stress fibers crossing the cell. In the isotropically spread cells no actin bunbles are seen. Microtubules in the spreading cells enter into large blebs and all nascent lamella and later form radial array. When MTs has been depolymerized or stabilized blebbing started before cells attached to the substrate and continue much longer than in control cells. In both cases the initial rate of spreading decrease several fold, and remains constant for many hours. After 24 h the mean area occupied by cells with altered MT system was the same as in control. Alteration of MT system had moderate effect on actin system--formation of actin cables started at the same time as in control (within 20 min upon cell attachment), however, they grew even in cells undergoing prolonged blebbing. Actin cables running along cell margin were similar to tat in control cells, but they did not disappear up to 1 h. When stabilized, microtubules form chaotic array: they do not enter blebs and in spread cells run parallel to the cell margin at a distance of 3-5 microm. We conclude that dynamic microtubules speed up completion of blebbing and promote early stages of fibroblasts spreading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.