Abstract

Centrosomes undergo cell cycle-dependent changes in shape and separations, changes that govern the organization of the cytoskeleton. The cytoskeleton is largely organized by the centrosome; however, this investigation explores the importance of cytoskeletal elements in directing centrosome shape. Since the sea urchin egg during fertilization and mitosis displays dramatic and synchronous changes in centrosome shape, the effects of cytoskeletal inhibitors on centrosome compaction, expansion, and separation were explored by the use of anticentrosome immunofluorescence microscopy. Centrosome expansion and separation was studied during two phases: the transition after sperm incorporation, when the compact sperm centrosome enlarges and the sperm aster develops, and from prometaphase to telophase, when the compact spindle poles enlarge. Compaction was investigated when the dispersed centrosome at interphase condenses into the two spindle poles at prometaphase. Although centrosome expansion and separation typically occur concurrently, beta-mercaptoethanol results in centrosome separation independent of expansion. Microtubule inhibitors prevent centrosome expansion and separation, and expanded centrosomes collapse. Since pronuclear union is arrested by microtubule inhibitors, this treatment also affords the opportunity to explore the relative attractiveness of the male and female pronuclei for these centrosomal antigens. Both pronuclei acquire centrosomal material; though only the male centrosome is capable of organizing a functional bipolar mitotic apparatus at first division, the female centrosome nucleates a monaster. Microfilament inhibition (cytochalasin D) prevents centrosome separation but not expansion or compaction. These results demonstrate that as the centrosome shapes the cytoskeleton, the cytoskeleton alters centrosome shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call