Abstract

Mechanical overloading to cardiac muscle causes fetal contractile protein gene expression and acceleration of protein synthesis. Myocyte microtubules might be involved in these pressure overload-induced hypertrophic responses. We assessed c-fos and fetal contractile protein genes such as beta-myosin heavy chain (MHC) and alpha-skeletal actin using Northern blot analysis and quantified total cardiac protein, DNA, and RNA content in the left ventricular myocardium obtained from four groups of rats: sham-operated rats; sham-operated rats treated with colchicine, which depolymerized microtubules; rats in which acute pressure overload was imposed by abdominal aortic constriction for 3 days (AoC); and AoC rats treated with colchicine (AoC + colchicine). Systolic arterial pressure was elevated to a similar degree in AoC and AoC + colchicine rats. c-fos and beta-MHC mRNA levels were significantly upregulated in AoC rats, which was attenuated by microtubule inhibition. Both RNA content and RNA-to-DNA ratio, the index of the protein synthesis capacity, were increased in AoC rats, which effect was also abolished by colchicine. Furthermore, induction of nonfunctioning microtubules by taxol or deuterium oxide exerted the same inhibitory effects. Thus the hypertrophic responses of the myocardium during pressure overload might depend on the integrity of myocyte microtubules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.