Abstract
BackgroundWe proposed to investigate the radiosensitizing properties of PBOX-15, a novel microtubule-disrupting agent, in a panel of cancer cell lines. ResultsPBOX-15 treatment was associated with significant cell kill and increased radiosensitivity in all three cell lines tested. The number of surviving cells in response to the combined treatment was significantly less than PBOX -15 alone in 22Rv1 cells. In these cells, radiosensitisation correlated with induction of G2/M cell cycle arrest by PBOX-15. The compound sustained its activity and increased HIF-1Α expression under hypoxic conditions. PBOX-15 prevented onset of hypoxia-induced radioresistance in hypoxic prostate cells and reduced the surviving fraction of irradiated hypoxic cells to levels similar to those achieved under aerobic conditions.MethodsClonogenic assays were used to determine sensitivity of a panel of cancer cell lines (22Rv1, A549, U87) to PBOX-15 alone or in combination with a single 2Gy dose fraction. Induction of cell cycle arrest and apoptosis was investigated in 22Rv1 prostate cancer cells. The cytotoxic properties of the compound under hypoxic conditions were correlated with Hypoxia Inducible Factor 1 alpha (HIF-1Α) gene and protein expression levels and its radiosensitisation potential was investigated in hypoxic 22Rv1 using clonogenic assays. ConclusionsThis preliminary data identifies the potential of PBOX-15 as a novel radiosensitising agent for the management of solid tumours and eradication of hypoxic cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.