Abstract

Recent data suggest that cytoskeletal defects may play a role in schizophrenia. We previously imitated features of schizophrenia in an animal model by disrupting gene coding for a microtubule-associated protein called STOP. STOP-null mice display synaptic defects in glutamatergic neurons, hyper-dopaminergy, and severe behavioral disorders. Synaptic and behavioral deficits are amended by neuroleptic treatment in STOP-null mice, providing an attractive model to test new antipsychotic agents. We examined the effects of a taxol-related microtubule stabilizer, epothilone D. Mice were treated either with vehicle alone or with epothilone D. Treatment effects on synaptic function were assessed using electron-microscopy quantification of synaptic vesicle pools and electrophysiology in the CA1 region of the hippocampus. Dopamine transmission was investigated using electrochemical assays. Behavior was principally assessed using tests of maternal skills. In STOP-null mice, treatment with epothilone D increased synaptic vesicle pools, ameliorated both short- and long-term forms of synaptic plasticity in glutamatergic neurons, and had a dramatic beneficial effect on mouse behavior. A microtubule stabilizer can have a beneficial effect on synaptic function and behavior, suggesting new possibilities for treatment of schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.