Abstract

The organization of microtubules in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae) was examined using primarily confocal microscopy. Pollination in conifers differs from angiosperms in the number of mitotic divisions between the microspore and the sperm and in the growth rate of the pollen tube. These differences may be orchestrated by the cytoskeleton, and this study finds that there are important functional differences in microtubule organization within conifer pollen compared to the angiosperm model systems. Pollen from P. abies contains two degenerated prothallial cells, a body cell, a stalk cell, and a vegetative cell. The body cell produces the sperm. In the vegetative cell, microtubules form a continuous network from within the pollen grain, out through the aperture, and down the length of the tube to the elongating tip. Within the grain, this network extends from the pollen grain wall to the body and stalk cell complex. Microtubules within the body and stalk cells form a densely packed array that enmeshes amyloplasts and the nucleus. Microtubule bundles can be traced between the body and stalk cells from the cytoplasm of the body cell to the adjoining cell wall and into the cytoplasm of the stalk cell. Body and stalk cells are connected by plasmodesmata. The organization of microtubules and the presence of plasmodesmata suggest that microtubules form a path for intercellular communication by projecting from the cytoplasm to interconnecting plasmodesmata. Microtubules in the elongating tube form a net axial array that ensheathes the vegetative nucleus. Microtubules are enriched at the elongating tip, where they form an array beneath the plasma membrane that is perpendicular to the direction of tube growth. This enriched region extends back 20 μm from the tip. There is an abrupt transition from a net perpendicular to a net axial organization at the edge of the enriched region. In medial sections, microtubules are present in the core of the elongating tip. The organization of microtubules in the tip differs from that seen in angiosperm pollen tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call