Abstract

Mitotic spindle assembly during cell division is a highly regulated process. Ran-GTP produced around chromosomes controls the activity of a multitude of spindle assembly factors by releasing them from inhibitory interaction with importins. A major consequence of Ran-GTP regulation is the local stimulation of branched microtubule nucleation around chromosomes, which is mediated by the augmin complex (composed of the eight subunits HAUS1-HAUS8), a process that is crucially important for correct spindle assembly. However, augmin is not known to be a direct target of the Ran-GTP pathway, raising the question of how its activity is controlled. Here, we present the in vitro reconstitution of Ran-GTP-regulated microtubule binding of the human augmin complex. We demonstrate that importins directly bind to augmin, which prevents augmin from binding to microtubules. Ran-GTP relieves this inhibition. Therefore, the augmin complex is a direct target of the Ran-GTP pathway, suggesting that branching microtubule nucleation is directly regulated by the Ran-GTP gradient around chromosomes in dividing cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call