Abstract
The DNA-damage response is a complex signaling network that guards genomic integrity. The microtubule cytoskeleton is involved in the repair of DNA double-strand breaks; however, little is known about which cytoskeleton-related proteins are involved in DNA repair and how. Using quantitative proteomics, we discovered that microtubule associated proteins MAP7 and MAP7D1 interact with several DNA repair proteins including DNA double-strand break repair proteins RAD50, BRCA1 and 53BP1. We observed that downregulation of MAP7 and MAP7D1 leads to increased phosphorylation of p53 after γ-irradiation. Moreover, we determined that the downregulation of MAP7D1 leads to a strong G1 arrest and that the downregulation of MAP7 and MAP7D1 in G1 arrested cells negatively affects DNA repair, recruitment of RAD50 to chromatin and localization of 53BP1 to the sites of damage. These findings describe for the first time a novel function of MAP7 and MAP7D1 in cell cycle regulation and repair of DNA double-strand breaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.