Abstract
Microtremor measurements are one of the most popular world-wide tool for estimation of site response especially within the urban area. This technique has been applied over 85 sites distributed regularly through Yanbu metropolitan area with an ultimate aim of seismic hazard microzonation for ground-shaking site effects. The horizontal to vertical spectral analysis (H/V) was carried out over all the sites to estimate both the fundamental resonance frequency and its corresponding amplification for the ground vibration. In most sites, H/V curve for amplitude spectra display a clear peak suggesting the presence of a soil-bedrock impedance contrast. Other sites, however, show more than one peak indicating the presence of more than one impedance contrast through sedimentary cover. The estimated values of fundamental frequency range from 0.25Hz up to 7.9Hz increases with decreasing depths of basement rock. It has lower values at the central zone extending from north to south compared to the eastern and western parts of Yanbu area. On the other hand, the estimated values of amplification factor ranges from the value of 2 to 5, where the higher values prevailing through the central zone with increasing thickness of sediments. Analyses of the acquired data set have clearly shown that, both of two parameters vary considerably through Yanbu city. This could be due to lateral variations in soil thickness and/or variations in the soil type at Yanbu area. These results show the 2D and 3D effect of basin geometry. The estimated values for the fundamental frequency from microtremor data are compared with that from shear-wave velocity structure within the area of interest and show an excellent agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.