Abstract

Highly parallelized biochemical analysis is a significant step toward achieving high throughput processing of patient samples for diagnosis and treatment monitoring. The standard microtiter plate is used to carry out multiple reactions for high throughput screening. By incorporating polymer microfluidic devices at each well in the microtiter plate format, the capability of the format could be significantly enhanced for high throughput processing of large numbers of biochemical samples in a cost-effective manner. Low cost replication of the microtiter plates is done using micro molding techniques, so microfabrication technology for making large area mold inserts (LAMIs) containing microfluidic devices at each well of a microtiter plate format is needed. A large area mold insert (LAMI) in the footprint of the standard microtiter plate was fabricated using an SU-8 based UV-LIGA technique. Excellent lithography results, with vertical sidewalls, were obtained by utilizing flycutting to minimize SU-8 film thickness variation and a UV filter for attenuating high absorbance UV wavelengths. Overplating of nickel in the SU-8 polymeric molds was used to make high quality metallic mold inserts with vertical sidewalls. Micro molding of polycarbonate (PC) was done using hot embossing, resulting in good replication fidelity over the large surface area. Thermal fusion bonding of the molded PC chips yielded good sealing results and the developed polymer microfluidic platforms showed good fluidic uniformity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call