Abstract

Intelligent operation and maintenance technology for vessels can ensure the safety of the entire system, especially for the development of intelligent and unmanned marine technology. The material properties of metal abrasive particles in oil could demonstrate the wear areas of the marine mechanical system because different components consist of different materials. However, most sensors can only roughly separate metallic contaminants into ferromagnetic and non-ferromagnetic particles but cannot differentiate them in greater detail. A micro-three-coil sensor is designed in this paper; the device applies different excitation signals to two excitation coils to differentiate materials, based on the different effects of different material particles in the asymmetric magnetic field. Therefore, a particle's material can be judged by the shape of the induction electromotive force output signal from the induction coil, while the particle size can be judged by the amplitude of the signal. Experimental results show that the material differentiation of four different types of particles can be achieved, namely, of aluminum, iron, 304 stainless steel, and carbon steel. This newly designed sensor provides a new research prospect for the realization of an inductive detection method to distinguish non-ferrous metals and a reference for the subsequent detection of metal contaminants in oil and other liquids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.