Abstract

A chlorobenzene-containing polyurethane microcapsule was placed on the free end of a silicon cantilever, and the temperature dependence of the resonance frequency was measured. As the cantilever was heated, the resonance frequency showed steplike increases at 109 and 270 degrees C that were due to the rupture of the capsule and the thermal degradation of the polyurethane shell, respectively. The frequency changes due to the rupture of a single capsule measured by the cantilever were much sharper than the transitions measured by conventional thermogravimetric analysis (TGA), which measures the average mass change of a collection of capsules characterized by a large size distribution. When two capsules were placed on the cantilever, their individual rupture temperatures could be clearly identified. In addition, the permeability of the polyurethane shell, with respect to chlorobenzene, was measured, and the rupture temperature was observed to decrease with increasing permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.