Abstract

Multilayered Ti/Al/Nb composites were produced by the accumulative roll bonding (ARB) process utilizing pure Ti, Al, and Nb element sheets. Up to four cycles of ARB were applied to the composites. The microstructure and texture evolution on the Nb phase were studied by X-ray diffraction (XRD), transmission electron microscopy, scanning electron microscopy, and electron backscattered diffraction. Nb and Ti layers necked and fractured as the number of ARB passes increased. After four ARB cycles, a nearly homogeneous distribution of Nb and Ti layers in Al matrix was achieved. As-received Nb sheet exhibited a fully lamellar structure and had a strong cold-rolling texture. After subjecting to ARB, slight grain refining was observed and the high-angle boundary fraction was increased. The intensity of the α-fiber was weakened, while that of the γ-fiber was strengthened during ARB. The texture evolution was attributed to partial recrystallization during the ARB process as a result of adiabatic heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call