Abstract

PurposeTo assess the effect of acid etching (AE) and adhesive systems on the microtensile bond strength of conventional glass ionomer cement (GIC) and a nanofilled composite resin. Materials and methodsSpecimens of conventional GIC (RIVA, Self-cure, SDI) were prepared in a bipartite Teflon mold and randomly assigned (n=12) to G1- GIC+Single Bond 2 (SB2) (3M-ESPE); G2- GIC+Acid etching (AE) (37% phosphoric acid, Condac, FGM) + SB2; G3- GIC+Single Bond Universal (SBU) (3M-ESPE); and G4- GIC+AE+SBU. The adhesive systems and the composite (Filtek Z350XT, 3M-ESPE) were inserted into the mold. After 7 days stored in a humid environment, the specimens were sectioned into five slices (Isomet 1000, Buehler). Hourglass slices were trimmed and subjected to microtensile bond strength testing (BISCO®; Schaumburg, USA) with 0.5mm/min crosshead speed. Data were analyzed by two-way ANOVA and the Tukey test (SPSS 17.0, α=5%). ResultsThe microtensile bond strength (MPa) means (standard deviation) were G1=9.46(3.79), G2=6.27(3.21), G3=9.35(3.91), and G4=10.13(3.53). G2 differed significantly from the other groups (p<0.001). G1, G3 and G4 were not significantly different from each other (p>0.05). There were 83% mixed fractures, 9.5% cohesive and 7.5% adhesive. ConclusionGIC etching promoted higher microtensile bond strength with universal adhesive than with a total-etch adhesive system. Acid etching is not necessary to enhance the universal adhesive bond strength and negatively affected the bond strength of the total-etch adhesive system. Without etching the GIC, there is no difference in microtensile bond strength between the adhesive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.