Abstract

The aim of this in vitro study was to evaluate the effect of different surface treatments (control, diamond bur, erbium-doped yttrium aluminum garnet (Er:YAG) laser, and erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser) on sound dentin surface morphology and on microtensile bond strength (μTBS). Sixteen dentin fragments were randomly divided into four groups (n = 4), and different surface treatments were analyzed by scanning electron microscopy. Ninety-six third molars were randomly divided into eight groups (n = 12) according to type of surface treatment and adhesive system: G1 = Control + Clearfil SE Bond (SE); G2 = Control + Single Bond (SB); G3 = diamond bur (DB) + SE; G4 = DB + SB, G5 = Er:YAG laser (2.94μm, 60mJ, 2Hz, 0.12W, 19.3J/cm(2)) + SE; G6 = Er:YAG + SB, G7 = Er,Cr:YSGG laser (2.78μm, 50mJ, 30Hz, 1.5W, 4.5J/cm(2)) + SE; and G8 = Er,Cr:YSGG + SB. Composite blocks were bonded to the samples, and after 24-h storage in distilled/deionized water (37°C), stick-shaped samples were obtained and submitted to μTBS test. Bond strength values (in megapascal) were analyzed by two-way ANOVA and Tukey tests (α = 0.05). G1 (54.69 ± 7.8MPa) showed the highest mean, which was statistically significantly higher than all the other groups (p < 0.05). For all treatments, SE showed higher bond strength than SB, except only for Er,Cr:YSGG treatment, in which the systems did not differ statistically from each other. Based on the irradiation parameters considered in this study, it can be concluded that Er:YAG and Er,Cr:YSGG irradiation presented lower values than the control group; however, their association with self-etching adhesive does not have a significantly negative effect on sound dentin (μTBS values of >20MPa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.