Abstract
Targeting cropland retirement programs to reduce agricultural nonpoint source pollution is accomplished by employing disaggregated information about physical and economic factors that influence the benefits and costs of adopting specific erosion control practices on specific land parcels. The agricultural nonpoint source (AGNPS) model is used in a Minnesota watershed to simulate the relative effectiveness of alternative targeting schemes with respect to budget outlays for annual payments to landowners, reduction in downstream sediment yield and nutrient loss, and reduction in on‐site erosion. Cost‐effectiveness increased with information on economic factors (the opportunity cost of retiring a parcel of land) as well as on physical factors (contribution of a parcel to downstream sediment yield). The marginal cost‐effectiveness of all schemes decreased as the enrolled proportion of watershed land increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.