Abstract
The effects of electrochemically enhanced etching on stainless steel coronary stent surfaces have been investigated in respect to their applicability as surface modifications prior drug-coating. Two methods have been investigated, one basing on grain boundary etching with diluted HNO3 and the other one on hydrochloric acid etching. The etching current was in the range of 30–200 mA which accounts for 0.34–2.28 mA/mm² surface. Grain boundary etching produced a micro-furrowed surface providing volume for the coating drug. The theoretical volume offered by the furrows was calculated on the basis of laser perthometry and was determined to be 0.146 mm³/cm². With the hydrochloric acid etching method it was possible to generate an evenly rough, terraced surface. Both surfaces have been coated with Rapamycin in ethanol (20 mg/mL) and examined under SEM after dilatation. It was shown that a uniform drug layer is maintained after dilatation of the stent and little flaking is visible. Quantification of the amount of Rapamycin yielded 21.4 μg/mm² for the electropolished stents, 36.6 μg/mm² for the grain-boundary etched stents and 27.7 μg/mm² for the hydrochloric acid etching after dilatation. For the grain boundary etched stents an improved drug adhesion was found, while the hydrochloric acid etchings resulted in a deterioration of the adhesion properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.