Abstract

Strategies are described for microstructure-sensitive computational methods for estimating variability of high cycle fatigue (HCF) crack formation and early growth in metallic polycrystals to support design of fatigue resistant alloys. We outline a philosophy of employing computational simulation to establish relations between remote loading conditions and microstructure-scale slip behavior in terms of Fatigue Indicator Parameters (FIPs) as a function of stress amplitude, stress state and microstructure, featuring calibration of mean experimental responses for known microstructures. Effects of process history (carburization and shot peening) and resulting residual stresses are considered in the case of subsurface crack formation at primary inclusions in martensitic gear steel. The need to characterize extreme value correlations of microstructure attributes coupled to the local driving force (i.e., features) for HCF crack formation is outlined, along with a strategy involving a set of FIPs relevant to different mechanisms of crack formation. Surface to subsurface transitions are considered in terms of competing mechanisms in the transition from HCF to very high cycle fatigue (VHCF) regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.