Abstract
Hydroxypropyl methylcellulose (HPMC)/sodium citrate (SC)/lipid tea polyphenol (LTP) photophobic films with different pore sizes from micron scale to nanometer scale were prepared by regulating the SC content (1–7%). The microstructures, physical and sustained antioxidant properties of these films were studied by using wide angel X-ray diffraction, small angle X-ray scattering (SAXS), scanning electron microscope, whiteness meter, ultraviolet spectrophotometer, texture analyzer and peroxide value test. Composite films with higher SC content showed larger pore size and whiteness. With the increasing SC content, crystallinity first increased then decreased. The addition of SC decreased the Ds (surface fractal dimension) value, smoothness of the cross-section structure, tensile strength, elongation and modulus of composite films. HPMC/SC/LTP microporous films possessed control-release property in oil system, reflected by the lowest peroxide value of peanut oil enclosed in film with 3% SC during three weeks, meaning this film showed the best sustained antioxidant property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.