Abstract

We carried out a systematic investigation of microstructures in a particular zone of Si multicrystals which shows a strong local variation in minority carrier diffusion length (MCDL). It was found that three typical regions with distinct microstructures correspond to the microscopic origins of the local MCDL difference. The region with perfect twin structure (Σ3 boundaries) has a high MCDL, while the regions with either high-angle grain boundaries (Σ9 and Σ27 boundaries) or sub-grain boundaries (high density dislocation) exhibit lower minority carrier diffusion. The relationships between the microstructures and the corresponding MCDLs are briefly discussed. This study has implications for developing improved Si multicrystals with appropriate microstructure for application in solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.