Abstract

Interleaved phyllosilicate grains (IPG) of various compositions are widespread in low-grade Verrucano metasediments of the northern Apennines (Italy). They are ellipsoidal or barrel shaped, up to 300–400 μm long and they are often kinked and folded; phyllosilicate packets occur as continuous lamellae or as wedge-shaped layers terminating inside the grain. Using electron microscopy techniques (SEM, TEM) six types of IPG have been distinguished on the basis of their mineralogical composition: (1) Chl+Ms ± Kln; (2) Chl+ Ms+Pg ± Kln; (3) Ms+Prl ± Pg; (4) Ms+Prl+Su; (5) Ms+Prl+Chl+Su; (6) Su+Ms. Types (1) and (2) are mainly composed of chlorite, with Ms and Pg as minor phases; Kln grows on Ms in highly weathered samples. Types (3), (4), (5), and (6) are composed of muscovite, with intergrown Prl, Chl, Su and new-formed muscovite. The IPG show all kinds of contacts: from coherent grain boundaries with parallel basal planes and along-layer transitions to low- and high-angle grain boundaries. The IPG formed on pristine minerals such as chlorite and muscovite. The transformations took place during the prograde and retrograde metamorphic path of the rocks: they were facilitated by deformation and they occurred in equilibrium with a fluid phase, which allowed cation diffusion. Prograde reactions [Chl = Ms (or Pg); Ms = Prl; Ms = Chl] involve dehydration and sometimes a decrease in volume, whereas retrograde reactions (Ms = Kln; Ms = Su) involve hydration and an increase in volume. These transformations do not simply occur through an interchange of cations, but often involve deep structural changes: transitions from one phyllosilicate to another generally proceed through dissolution-recrystallization reactions. In conclusion, Verrucano IPG represent microstructural sites which have not completely equilibrated with the whole rock and whose mineral assemblage depends on the original composition of the microstructural sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.