Abstract

At Obórki in central Poland we examined a 3 m thick Late Weichselian basal till deposited by the Vistula Ice Stream. A multi-proxy approach involving a study of grain size, grain roundness, crushing index, petrographic composition, till fabric and till micromorphology in a closely sampled vertical profile was applied to decipher till formation and ice movement mechanisms. The till consists of a succession of four texturally and structurally different units generated by a combination of processes related to effective stresses exerted on the bed by active ice. Deformation, intergranular advection, clast ploughing and localized basal decoupling played important roles during till formation. Micromorphological analysis reveals that the most common S-matrix microstructures are grain lineations, grain stacks, turbate structures, till pellets and crushed grains. Microshears dominate whereas plasmic fabric is not well developed. We use grain roundness, crushing indices and microshear geometry to determine subglacial strain magnitude in the till matrix. Microfabric and macrofabric S1 eigenvalues together with IL indexes indicate low shear strains in the order of 10–102. Strain estimates vary depending on the particle sizes used suggesting a plastic mode of till deformation. All proxies studied suggest complex and temporally variable subglacial conditions under the marginal part of the Vistula Ice Stream, probably caused by changes in till rheology related to fluctuating porewater pressures. Fast ice flow was facilitated by a combination of bed deformation and enhanced basal sliding on a thin water layer. Our results may also be representative for other terrestrially-based Pleistocene ice streams moving over soft beds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.